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Mr. J. Lloyd Pflug provided technical assistance and performed all nor
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IN~~ DDt~t~PION

A previously reported benchtop procedure der~ nstrated ::enr~ f.ifluoride

to be a convenient direct fluorinating reagent for aliphatic a11r~oes .2 This

convenient procedure eriployed boron trifluoride etherate to catalyt~ cal ~~

initiate direct alkene fluorination in a dichioronethane su ension . It

required only such standard it~~’s as a drytox for storing an~ weichinc the

xenon difluoride and a benchtop firehood in which to conduct the flunotca-

tions using standard cher~ical glassware. when norbornene was fluorinated

by this procedure, an unprecendented high yield synthesis o~ 2-exo-5--exo-

difluoronorbornane 1 and its ana1cx~ous 2—endo— 5-exo-iscxr~r 2 occurred . ~

This result was in distinct contrast with pr~v~ ously reocrtod ha ln~ien arr~

interhalogen additions to norbornene Ithat selectively ~roduce-~ the anti-

and. syn—2 , 7-diha lonorbornane isarers throuah an innic mechanis~m. or the

2-exo--3—exo— and 2-endo— 3--exo--dihalonorbornanes fran a racilcal ~at1~~av .

‘I~~ past norbornene fluorinaticns produced three rt~~jor ro~ ucts cc~ron tn

each reaction . Fluorination with lead tetraac’~tate/hvdrn~cen fluoride in a

Freon 112 dichlororrethane solvent ,9 and a rrore recc~nt flucr:xic~tion us~nc

diflucroiodobenzenes with a dichloromethanc/’nvclrocen urr~de sob . ert 10 both

afforded the ionicallv rearranqed 2- xo-7-anti--difluorenorbornane 3 and

2—exo—7--~~~ -dif1uoronorbornann 4 , plus neror~c~’n1yl flucr~~e ii as the nvr~or

products . In both cases the ~~~ -2 , 7-difluoronorhornane ~ ?rove~ to be the

2 
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predcxninant species. A more recent hydrogen fluoride initiated reaction be-

t~ een norbornene and xenon difluorid.e in dichlororrethane solvent provided the

nortricycyl fluoride 11 as its o~jor product. The 2, ’-, 2 ,5-, and 2 ,3-difluoro--

norbornane isarer sets ccL~Dri,~ed the six additional isolated ~.jrod :cts.11

The boron trifluoride ethe. ~ite catalyzed fluorination of ncrborr.eae wi th

xenon thfluor ide represents the first selective synthesis of 2-exo-5--exo—11-

fluoronorbornane 1 and 2-endo-5-exo-di fluoronorbornane 2 in hiph y ield. 3

when this reaction was conducted over a 2 0-20 hour period, the c~ c carbined

2 , 5—isaners represented 93 percent or more of the di fluorict’ ~crcxducts

(Table I , 87-91% of the total reaction ~roducts . The 2- :c-~ -anti—dif lucre-

norbornane 3 is the only other difluoride detected as a ~‘iuor - redcct , 
12

~Thien a nortion of thin sa c  reaction is ouenched after crcly one hour and

fifteen irinutes , fc~r initial di . fcuor~de xtx~ts wer e I ..:‘I (Eavation 1).

The 2—5 — ifluoronor~rcc ne inmer~ i and 2 carprised s.~~ohid y ~ erc thor. one

half of the finorinated reaction eroducts. The 7 , 7-~3a iuorrccrborn~nes 3

and 4 , cc~c cr. lv the cajor products in - .~.ariv all other ncrhxnrnen e tThcr~na-

tions , al’~c natccns, and interhalc~ onat ions , were ident:fied es tee cc: -

maining t~~ .croducts . Analysis of the ~~~~encned po~~eon ed this reaction

a ”tor 20—22 hours acain revealed I and 2 to be near ccy exc11s1~e c1ifieoin fo

products (Table ) .  Thi s result sugqested that the 2 ,7-difi’. . inronorhomane

- INSTIRT TOUATTC~ 3. -

isa-rers wcecc’ selecnive ly ise rizod into additional 2 T—d i~ 1 oorenor:X,ranc

prod~~ts dur ing the extondod 20— 22 hour reaction tin~c. This scerospecific

3 
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Table I. Difluoronorbon-rane Isarter Product Distr ibution Fran Boron T n -
fluoride Etherate Catalysis in CH9C12 Solvent.

Run Conditions 1 2 3 4 5 6 7 11

1 A (Cctnbin& 98.5) 1.5 0 0 0 D 0

3 A 45 17 38 0 0 0 P 0

4 A 66.5 30 3 0 0 0 D 0

5 A 64 29 7 0 0 0 P 0

6 A (dark ) 65 31 4 0 0 0 D 0

7 B~ 58 26 3 0 0 0 13 0

24.5 26 43 7 0 0 0 0

8 3C 62 26 3 0 0 0 9 0

40 17 31 12 0 0 0 0

C~ 22 26 42 9 0 0 0 0

10 (A No Catalyst) 19 28 37 5 0 4 0 8

ref 11 (HE Catalyst) 11 20 19.5 6 2 3.5 0 38

A. -78°C to rca-n tariperature , 20-22 hr. B. -46°C to rrxzn t~ rrerature , 20-

22 hr. C. —4°C to -39°C, 1 1/4 hr. D. Not determined .

a Product percentages change to 1 (66) , 2 (30) , and 3 when umJcno~c 7 is
not considered.

b -43°C to -39°C during XeF2 cons~arption .

c Product percentageb change to 1 (68) , 2 (28 ) , and 3 (3) when a n ~~ r~ 7
is not considered.

d -46°C during XeF2 consurr~ tion.

e 4l°C during >
~~ 2 

consurption .

4
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isaierization is initiated by the boron trifluoride etherate; no isreriza-

tion results in the absence of this fluorinated Le.~is acid under identical

reaction conditions (Table I ) .

This paper describes the e plo~a~~~t of deuterii.m labeling and cacat’st/

solvent variation to st~~y the 1Techan i~~n and product selectivity afforded b”

this boron trifluoride etherate initiated xenon difluoridc ,/nc:

fluorination . Additionally, the exitorrun iabe ienci nrc ides an u .er ’ucus

ch~ nical identification of the unique 2 , 5—di f1uo~cnorbernar.e isarers .’7 ’

Interesting isareric product reversals ~~re obtained dur i cc te~~~-c~~~ ~~~

solvent variation studies. Such iscirenic product r versa is could reve

significant in oorreiatiiiq reaction condition options with desired - uv’ - c

control when using this convenient, direct flucr enation procedure .

RESULTS AND DISCUSSION

!~~uteri~nn Labeling Study. I~~pending upen the reaction conditions im-

pesed, direct xenon difluoride fluorination o~ norborriene by boron r n -

fluoride etherate initiation in a dichiorarethane suspension produced either

three or four clifluoronorbornane cczr~ ounds 1, 2 , 3, and 4. The inen iv ty

of 3 and 4 proved to be the previously reuorted 2—exo-7-ant - ai-vf 2-exo- ’--

~~~-difluorono±omane isorrers rescectively; ha&ever , corroounds I and 2

represen ted an unreported isareric pairJ4 The s~rrietnicai pattern dis-
1 1°played by the ~T and F nrnrs of 1 suggested this new di fI Lx’r±de to be

either 2-exo-5-exo-difluoronorbornane or the analogous 2-exo-3-exo-isai~ rY~

Car~~und 2 was ~resured to be a coorespondinq endo-exo-isaner . ~ ts sare--

what similar eemin3 L-~0’ pvir sciitting pattern to that exhibited b the

minor 2-e o— 3--oxoindbr Dmorlorbornane product previously isolated , ~urteer

5

- , .

~
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su~~~rted this assigrirrent.16 A dehydrofluorination of 1 yielded a fluoro-

norbo rnene which by itself failed to conclusively differentiate betweer the

2-e~~—5-exo-di fluoronorbo rnane or the 2-exo- 3-endo-isaner - Spectral charac -~

terization to identify 1 and 2 was al~o inad€quate since a corr~ arison of all

four potential isare rs was not possible from this reaction syster . There-

fore , deuteniiin labelinc of the nor bornene was used to verif y the isare ric

identity of 1 and 2.

Fluorination of 2-deut erion orbo rnene was conducted under the sarre re-

actions used with unlabelled norb ornene . A portion of this reaction was

quenched after one hour and fifteen minutes so the initial lv fonired reac tion

products coul d be isolated and analyzed . The absence of a proton magnetic

resonce (~~ r) signa l from the deuteriu m atom incorporated in products 1

and 2 afforded an una!thiguous identification between the 2 , E-drfluoro- and

2 , 3-difluoronor bane isarer ic pairs. A radical fluor ination irechan i~ n would

produce the unrearranged , deutenated 2-exo-3--exo-- and 2-endo-3-exo--dif fln rv -

nor bornane isa-tens ~or I and 2 respectively (Equation 2) .~~~

- INSERt’ E(X~ TION 2 —

These caripounds would reveal a g~~ino1-HE pmr signal one-~olf the intec~rated

value ( one proton ) of their analocous unlabeled canpounds (Table II ) .

Clearly the prt~ results outlined in Table II reveal the 2-exo-3-exo arid

2-endo-3-exo-difluoronortcrn anes are not pr oduced . :ns tead fractional

g~~ina1—HF p~tt’ values appear for both the 1 and 2 isomers (Table I I ) .

fracti onal values must be produced fran a norbornyl structural arranga~ert

6
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that is characteristic of an ionic reaction irechanism. Thus , 1 and 2 rep-

resent 2-exo--5—exo—th fluoronorboni~ cr~ acid —endo— 5-exo—cli flueroccrbornane ,

respectively, which only rnri form by rearrang~ rent within the nori ’ocrivl

stnctural skeleton . The initial formation of both ionicallv generated

2 , 7— ifhr’ronorboroane isarers 3 and 4 in addition to I and i , the suc—

cessful fluor inatnun of a nitrated ahrhati c alkcne ,’ and the tota l absence

of any 2 , 3- ifluoro cthcrvri es 5 and 6 ,~ all s’~nc.-v - v  S -ream en •:;~:chjs ive

ionic fluorination rrechur~:sn. Thi s icn~c f u o r  Lnati ori t s com I selectivcrv

in producing substantial arDunts of I and 2 was ctuched f’:rr-er ‘:ith deu-

terium labeling.

Additional prrir analvsi~ of all four in :tial cretiots thom th~ I -den-

terionorbornene/xanori diflear ide fluo r ination crovaded an v-:mlicnt :rerh eI

for tracing the progress of this selective ionic reaction an. ~oc irvesticat-

ing its resultant preferential isarer~zation oathwav . Sc~•:ra represents

an ionic rrechanc~~r consistent wc th the reanrariced do ~ter :un atari of all

four initially forrred products 1, 2 , 3 , and 4. The ar~i of dcs.ter:un

rearrangement predicted by scherme 1 is recorded in Table II. Fx:cllent

agreerent is obtained between that predicted and found f rnxa ocr analysis

of the initially foicred 1, 2 , 3. and 4 difluoricle urcducts. The slichtlv

lc~ oem—HF and high ncrbomyl s~:clc tori intecrnt :on for I possibly results

from a hi~~ier degree of initial fluorination at the deuteniura labeled vinyl

carbon. An tr i tial 5, 1—hydrade icrrat~on overtually Droduces both the

2 , 5-difluororAorbomnanes I and 2. Alternci t v o l v , both 2 , 7-difluonide

isarers 3 and 4 resul t from an initial sic~ o bond 4 , 3—sh if t  Cscherte 1 ) .

— —  _ _ _ _ _ _ _ _



Table II . Predicted arid Actual Initial Product ~~T Signals from

2-E~ uterionorbjxniene/XeF... Fluorination.

Product C~ n-HF Bridgehead Bridgea Norborm~ I Skeleton

6 Calc. 1.0 2 .0  — 6.0

S Ca ic. 1.0 2 .0  — 6 .D

4 Calc . 1.5 1.5 — 6.0

1. 5 1.5 — 6.0

3 Calc. 1.0 1.5 0 .5

Actua lb 1.0 l.~ 0.5 6.1 (6 .06 )

2 Calc . 1.5 2 .0  — 5.5

Actualb 1.5 2.0 - 5.5

l Calc . 1.5 2 .0  — 5.5

Actualb 1.4 2.0 — 5.6

a~~ 1~ the 2-exo-7—anti—difluoxonorbornane isare r 3 ~~ssesses a chanica l

shift ~fnich alla-;s separate evaluation of the bridge nro ton Cs ) .

b
~~action Conditions: -43 to —3 0° C , 1 1/4 h r . ,  all XeF2 consur t~d.

B
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The ionic fluorination rrechzr i~ n. outlined in scha~~’ 3 also reveals

three possible factors that contribute to the highly selective pnm-3uct ion

of both 2 , 5—difluoronorbornane isarers 1 and 2 as corr pared to other nor-

bornene halogenations. The first factor involves formation of the very

stable 9 type caIt)onium ion species. The fluor ina ted cai±xan~ n” ions 9a

and 9b that produce the 2-5-difluor onorbo rri ane isaters 1 and 2 mesuecticel’. ’ ,

rearrange from the initial 8 species to place the reas:~cive charge dansat~

the farthe st possible distance from the fluorine bonded car bon atom. 1n

the case of the 9 ty~~ fluorinated carbonium ion species , the positive

charge density is three carbon centers away . The 10 type fluor inated

carboni um ion that yields both 2 , 7—difluoronorbornan es possesses its ~osi-

tive charge closer to the fluorine bear ing carbon atom just t.~c centers

away. The extr ern ely high electron withdrawing properties of the bonded

fluorine atom in 8 must be sufficiently long ra nge to re uire the additiona l

stabl ization provided by the 9 tyne species over the 10 t~-pc carbonium

ions. 17 Such additi onal stabilization ap~arent1y is nct recuired in

norbornene additions with the other less e1 ectroneqative aalocens . A

second factor contributing to the - ~ c h  degree of 1 and 2 product fo rrra tion

could be attributed to a favorable steric attack by th ’~ fluoride ion. Thc

fluoride ion attack in both 9 soecies cccur s fran a direction that many’e~es

repulsive clctrcxiic interactions between the ~aqh  electron density of the

bonded fluorine atari are -i the att acking f luoride ion . Tb i s  same r~~~ cct2canic

interaction minimizati on is also found in the lOa soecies th ’: -mr ”ides

product 3. Interestingly pr oducts 1, 2 , and 3 contra ~ate -*r -ty :x~re~~

or nt re of the thit~a1 fluorinated products , while the rtiric’r ored ’in~ ‘

9
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is generated from species lOa where possible fluor ine-fluorine interactions

are not minimized. Other norboniene haloqenati ons have often produced the

analogous ~~~-2 , 7-isater as the major dihalide oroduct. 4 6 ’8 ’9 The third

factor involves the role of the boron tr ifluoride etherate catalyst. All

four initial fluor ination products are formed fran 9 or 10 type rearrariced

carboriium ion species which are generated fran 8 through sigma bond and

hydride migrations. Fonr~ tion of 9 arid 10 from the initially produced 8

carboni~ ti ion species results from the energetically unfavorable situation

encountered in electrophillic additions when a positive charge resides ad-

j acent to a fluorine bonded car~x~n ato~ J ~ A concanittant tetrafluroborate

anion formation during the fluorination (scheie 1) could orora~ te the sed ec-

tive rearrangerren~ of 8 to the s~ st stable 9 species by providinc the stable

boron tetrafluorobor ate counter )n . This tetrafluoroborate anion prov:des

a site for the second fl . ior in~ ri~sur fra n XeF2 to reside dunino the time re-

qui r ed for rearranc r-~r~~. ‘.a . ara I the att~chrnc fluoride ion upon species

9 and 12 car be ao’n eric of fl~r--~n~ ‘tcr’s carpri sinc the tntrefl-aoro-

borate anion and ~s ne~ oec~ssa r’,- ~hc same iIj onir .e originally bonded in the

xenon difluoride reac nn - . ~~~~~~~~~~~~~~~~~~ for the te~rafiuoroborate atior. forma-

tion ~nd partici~~ tiori is :~~ ssed and ~~r~f led in the cata2a~st/solvent

variation St ad y outlined here to .

The tet f1uc~~ Lx:ta~~ anion also ~rc~~trs ~o pa~~icioate in the selective

isareriZatico of the ant~-2 , 7-~h f ~ joronorbr~rnane 3 r-ostly to 2—exo—5—exo—

difluoronorbomane 1 and scrr- to 2 -endo—5—axe--difluo ronor3~~rnari e 2. t~.

review of Table I illustrates tha t runs 1-6, 713 , and 8B are very consistent

10
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in the percentage of 1, 2, and 3 oroducts initiaJy ~~ duct~d~ ac~~~ver , i”ari

3 provided an exception . Since neither \a~~’inc the concon~~auacn of the

boron trifluoride otherate catalyst ( runs 1, 4 , and nor t-arr’:nn i±e

arrotmt of light ex~xDsuro ( runs 5 and 6) sionificantly altorec the isorreric

product percentages , ~in acid catalyzed iso~arizat~on of the in~ t±a1ly formed

products was susoectecf. l~~ reactions ‘~;erca conducted ‘.~hcrc one half of the

reaction solution was aliquoted. and coenchod i. 1/4 hours after thc ~dd ition

and disappearance c-f the XcF2 reagent ( runs 7C and 8C). The rc~na aeoar of

the reaction suiutions were allo~nd to proceed for a total of 20-?2 hn ~rs

( runs 73 and SB) under the exoeriirer,tal oonc.itions of vans l-~. .~~. car~ arison

of run 713 to 7C and of SE to SE reveals that all but three to four percent

of 3 isare rized rrostly to I and sate to 2. Funtner ‘.‘n:if:cation that hx~ron

trifluoride etherate effected the iscr~~rizatio:a of 3 to 1 and 2 was achieved

by stirring pure ant-i-2 ,7-clifluoronorbornane 3 in dich io~~~~thane with boron

trifluorid.e etherate under the time and. t~ iiperature conditico r ann oyed in

runs 1—6 . Malysis of a]~x~ rc”veaiod unisarerized 3 (4t) 1 (63~ , 2 ( 2 f l % ) ,

and the unidentified :sao~r 7 wIth a high qlrc retention tLrie .~~
2 The

fluorination of 2-deutenn oaorbornene Table Ii~ was cond icted under tin’

s~ re experimental conditiorn of runs 7 and 3 ~Tabie :~~. 13y ;.‘:dtnc tins

reaction so.~ution and - ‘c~-~ r~~ ~ e ~“' taa1 ~r ’  1 -~ rc~ z~~ ‘~~_o’~ ~~

of 1, the increase or decrease of nnu: s :cimds at srxecific deuteratod rxj sit .icn s

allowed a acre detailed study of the isc~rcr ’.zat±on pathway of 3 to 1. 

-- .—~~~~~~~~~~~—~~ .
~~~
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Table III. Proton Magnetic Resonance P~nalysis of I~~uteri ~rn Atom Changes

in 1 By BF 3O (Q- I2
Q~I 3

)
2 dssisted Isorrerization .

Reaction Conditions Cern-HF Bridgehead H ~.orborcyl Skeletal ~1

A 1.25 hr (—43 to —39°C) 1.4 2.0 5.6

B 21.25 hr (— 43 to r . t .)  1.5 1.9 5.6

Predicted Change (A to B) increase decrease cc change

Reaction condition A (Table III )  represents the rxnr intecration of the ini-

tially formed I isare r listed in Tab le II and nredicted in scherrc 1. Fe-

action condi tion B displays the change in p~nr integration of 1 a fter iso—

rrerization. Isomer 1 was chosen for this car~ arison since it is the ore-

dominant isarer produced in this selective isarer ization of species 3.

Comparing both 1 isare rs initially oroduced ( scl~~re 1) with the two 1

isomers predicted by the scherre 2 isorrerizati on pattr~ay, reveals that the

selective isarerizat on of 3 to I should decrease the ~nr sicrnal at the

bridgehead position where no deute riun atom initi ally existed . 7\dd: t !anal’ y

the ganinal-HF ~~~ signal should increase by producing two now 2 ~sarers

( scirerre 2) with no deuterii~ atom incorporated at this position and no

change should occur in the pnr signal in the romaining 2-exo-5-exo-difluoro-

norbornarie structural skeltan . These changes outlined by sc:r~~~~~~ 2 aqree

with those actually found (Table III ) . ~~nselective isameriz.:tion of di—

fluoronorbomane isa~~rs in the presence of the Tt ~c:.s acid. hyiroor?n fluoride

has been rer~ortod~~ and was attributed to an anoloqous process which effects

an ~onin hydrogen fluo ri de cata lyzed h~~ rolysis of ~~n~~l ~1,~~rido .
19 dust
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as the Lewis acid hydrogen fluoride apparently seeks out a h_~td.y eanc’en-

trated nonbonded electron palr on the fluorme ~~~~~~~~~ the \~ ca:~t ~~~)L~~1to1

of the boron atom in the boron trifluoride ~~~~~ acid seecies could be ex-

pected to behave sin.ilaxly . Fortr~ tion pf the stable tetrafluoroborate onion

~~uld provide a stable species to transpert the fluor ide ion dur uac isare ri-

zation , and once again , allows forre t~on of the sane stable I

norbornyl cation (scheme 1) which places the positive charge .de~nsi rv  three

carbon atoms fran the fluorine bonded carbon. Contin eel c’ arnicht rocr

t~~iperature isarerization through species 9 (scheme 2) nrorcrcs the select ive

ionic isarerization that produces the oajor 1 isoco under to : 1cco’~~ tern

reaction conditions. The loss of the initially ~orr~e~ isnncc 4 coul d alsc be

attributed to this boron trifluoride etherate initiated in~’er:.ze~ ion .

Catalysis/Solvent Studies. boron trifluoride etherate catolusis selec-

tively provides 2—exo--5—exo-diflucronorborcane 1. innnarison of rate lne~

reacti ons 1—9 (Table F with a blank Xe.F2/norborner.e fl anranatict ( React ion

10) shows the greatest an~ unt of isomer 1 is afforded by the se ’.ectnve

boron trifluoriclo etherate assisted isareriza t ion . ~~~~~~ the ~xaro~ t n -

fluoride etherate catalyzed reactions 7C , SC , and. 9C dis~~ ~ay sc~re ancreascd

selectivi ty of I over that exhibited by the nonca ta lyzcil r~a~co ‘O.

Scheme I invokes formation of the boron tetrafluoroborate an i ce  and

its subsequent use as a secondary fluorinati ng species to e~nlain i

the selectivity tc’.~’ard 2 5-ill flaoronorbomane isc~~rs. To verify the

proposed. participation of the tetrafluorcborate anion :bircnn m i  cal

fluorination, a xenon th f l c~~e.’.dc fluorination of norbornere ~us natoluzed .

directly with the tetrafluoroborate anion in tb-a absence o~ borer. tn fluo ri d e

13
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ethe rate . The tetrafluoroborate anion was introdured into tiic- reaction as

the lithi t~~ salt , and diethyl ether solvent was 1r~pi3yed for inproved ooIu~

bility of the lithium tetrafl uoroborate catalyst. Table 1V reveals that

the presence of the tetrafluorobora te ~anion effects production of the

Table IV. XeF2/Norbo r nene Fluor ination Product °erc~~ntages: Catalyst and

Solvent Variat ion 1)ataa

Catalyst Solvent. 1 2 3 4 5 6 11

Blank 
~~ 2~~ 2 19 28 37 5 0 4 8 0

Blank Diethy l ~ther 9 II 48 16 0 3 12 3

LiBF4 hiethyl Ether 27 5 18 7 C: 0 17 l5~

BF3O(Q12Q-13)2 Diethyl Ethe
r: 

14 12 44 21 0 0 7 0°

BF3C(CH2CH 3) 2 Diethyl bther 16 13 43 19 0 0 6 3

~~if ference from SCOt ~~e due to the unidentified oroduct.~~

12 identified as 2-exo-fluoronorbornane .

~~~is reaction a~~ iteon~~ F’ ~~~n 1. I~ of an unJ~~a~i c~~~~und (See rof.  29).

dLe than 1% (0 .3~ )

e 440 to roan terr e., 11 hr.

~—44°C to roa n tc’rp. 24 hr .

2-exo—5-e —dif1uoronorborT~ane as the maj or dif1’~nr ide . The combined.

2 ,5-difluoronorbornaees 1 and 2 vr~xbrrthatod o~~ r the mne coriron 2 ,7-di-

fluoronorbomanes 3 and 4. However , absence ~ f the tetra fi rx n:.borate and en

in diethy l ether solvent reduced brt thF 1 as the canon difluoride, and



the 2 ,7-difluoronorbornanes 3 and 4 siqraficantcy ~redomirctnd . over both

2, 5-difluoronorbnanes I and 2. This corrparative result stronoly se er s

tetrafluoroborate anion formation as becn~ one sionificant factor en the

selective snythesis of the 2-exo-I -exo-difluoronorbernar!e ~arcx3uct 1. ~~t

follows further that the tetrafluovoborate anion of the c~ ta1’-tic 1athi~ a

salt introduces the second flxreee atom into the two tines cf nonofluero-

norbomyl cation species 9 and 10 in an analoqous rraxcnor to that illustroted

in scheme 1. The tetra f l.uorobcrate anion continually would be re aleneshed

by the xenon difluoride reagent as it sbnaltanon esly introduces the firs t

fluorine atom into the norbernene nolecule to venerate species 8 , 9 and 10.

Significant in the ciiethyl ether solvolyzed xenon d: f .uo rcde fluorina-

tion of riorbornene is tic drastic product reversal that resulted ~~-ien the

catalytic s oles was varied or snit ted entirely (Table T . .  Reaction with

the lithium tetra fluorobora te favo red orciducrien of the 2 , 5—difi ucricles I

and 2; however , the uncatnivzc-d fluorination effected ci larc-o se ert ly i tv

for the 2 ,7-difluoride products 3 arid 4. S~ch potential :scrrr-ic enoto-ol

in ‘this fluorination procedure is sursr~ ~eo; and could be a cL ,nsezreenc e of

at leas t twa factors . A oneeter sclvat ine çxa..ler o~ rh e th n i  ether solvent

over di chloraretharie toward ionic species would s ~ebi lize species B and 10

rrore effectively and rend-c r a decreased ncoassity for srer:es 9 fo rma tion .

This would permit the observed increase of oroducts 3 and frm s~Yc< ins

10. The appeararccr’ of nortri nie d fluoride ‘Li as a f luor±natj on ‘~ncd ec’t

in diethyl ether solvent also s ports this edfect. The enhanced ionic

stabilization proviciee by d~ e thy l  ether t~~ a~ -i species 8 tr: sc rs the

emergence of a o~ipeting fluorination — el vr ination pa iwriv. f~euat2on 3

15



illustrates a plausible fluorination — elinina ti.on uoth\-nv that incorpo-

rates very well into the carn~ n mechanistic process out~ m e d  in sch~~~ 1.

- INSE~~ EQUATION 3 -

Upon formation of species 8 , the second fluoride snecies frori X~F2 ~~~~~~~
‘

fluorinate the rearranged catonic species 9 and 10 as they fern f nor. species

8, or alternatively, the second fluoride species can effect an elL’mi.r.ation

upon species 8 to form nortr icycly i. fluoride 11. Analogous eiL-rdnations

previously have been reported with xenon difluofide/alkene ‘~luorinations

that produce nonofluoroalkenes2 or other halogenated aikencc. 2c The possi-

ble formation of trace ameunts of hytrooen fluoride from this eiind nation

pathway could also enhance a lack of product selectivity in the diet�ayl

ether scivent. Secondly, the role of the tetrafluoroborate anion is greatly

diminished to the ciiethvl ether solvent unless the tetrafluoroborate anion

j s  directly in troduced. Use of boron trifluoride etherate en diethyl ether

solvent con troucs to f avor production of the 2 ,7— dLfluor ide ~sovrrr’ 3 acid 4

(Table I V ) .  Boron tr :fiuor~de etherate effects little change Lv the ‘crbouc’cs

obtained -~~an cczrpared to ‘he uncatalyzed fluorination in cilcthyi ether.

Apoa.rentiy th~ ~n fen ctcd y hich concentration of ddethyl cener solven t T~O:C~

cub s con tan x usly ctr~cboxes the boron trifluoride irciecules and negates any

appreciab le tetraf ~erenonate anion concentration from fo-ounq . The lack

of any aDprec~ ~bh 3 ~and 4 product iscr~orization to oroducts 1 and 2

( Table IV) also illustra tes tn-c inability of complexed boron tr:fluoridc

to convert to a tetraf uonct~~r3te onion as outlined in schavr 2.

-— - —  ~~~-~~~- - 
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CON(~~Ufifli\

The boron trifluoride etherate initiataa fluorination of n’:;nborn-av:

with the xenon difluoride reagent initially produces four difluori de addi-

tion products . Wnether dichior acetha ne or d±eth ’l ether solvent is eonioved ,

2-exo—5-exo—difluoronor bornan e 1, 2-erido-5-exo-d i iii coronor barnan e 2 , 2-exo-

7—anti -difluoronor bornane 3 , ar id 2-exo-7--syn-difluoronorbnrriarie 4 are the

four initial difluoronorbo rnane isomers obtained; bc~ :ever , ar interest’nq

product reversal oecurs de~~nding upon which so vent is used. t i t h  di-

chiorariethane solvent the two unicue 2 , 5-defluoronorbonrenne i scoots collec-

tively predominate, while the normal 2 ,7-isaners, produced to other halo-

geriation ar id interbalocenation ad ditions~ are selectively syn thesized in

diethyl ether . Extended reaction times in dichlorsr e’thane solven t ‘fford.s

the 2 , 5-difluoronor bornanes in near l~-’ exclusive yecti throuvh a sebc’ctrve

isomerization catalyzed by boron trifluoride etherate . 3 .tnalO l~O 1 S  den -act

f luor ina tion in dichloromethane ~.:ithout the boron trc ”lucnicle ethorate re-

sulted in a less selective distribut ion ; however , a sledht.bv :a*c:a.ar selec-

tivity for the 2 , 5-difluoron orborn ane for matter wrs still observed .

A boron tr ifluoride ether ate initiat ed XeF2 fluorination of 2-d euterio-

norbor riene in a dichior omethane suscens ton unam biguously established the

identi ty of the un iane 2 , 5—difluoronorbornane isacer s three-ed ~rir tot e—

gration . This iden ti ficati on effectively cunpi~~~nts thai: cciant~ fication

obtained solely from spectrosc onic assigrments .11 ~rotco o~uvnct~o resonance

product integration s also ~crevided a detaclee elucicivtioo of this convenient

direct iccec fluorination react ion (scharie Id .  The production of 2, ’—d i—

fluoronorbarnane :rrouc t s throuah structural rearranqenent strOric lv s naestcid

17
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a mechani~~ with ionic character . Additional evidence pointing to an ice ’ i.’

character was obtained in a separate photocherdoal induced XeF2 fluori ’ t~

of norbornene which provided only the 2—exo-3-exo-- and 2—endo-3-exo-di~d unto-

norbornaries 5 and 6 as pure difluoronorbornane addition products under

action conditions designed to proceed through a radica l pathwny . ~ Furthcr

arir analyses of the extended time reaction products En dichlor-coethane o’~T~

vent suggested tI-at the selective isanerization of the 2 , 7-di f lurornor cc -

3 and 4 to the unusual 2 , 5-di fluoronorboruanes 1 and 2 proceeds through

acid catalysis. This catalysis (sch~~~ 2) produces the same ctthie ionic

precusor species 9 necessary for the initial 2,5-di fluoronorbornane i scr-~ ’

selectively (schcoe 1)

The boron trif uoridc etherate porfoxnrs an in~~ rtant function in t’ er

preferential synthesis of the 2-exo—5—exo— arid 2~endo~5_exo~difluoronot

bornaries in dichioranethane soihicnt . bhile it provides some selectivit”

tc~’ard initial 2,5-difluoronorbornane isai~ar formation, it also initthtc:

the selective isarien izat±on resnonsible for a neani’-’ exclusive uceld o~

these two 2, 5—iscr’eie . It- both the in itial f luor enat: nn ( scher~ 1) ar~

the selective isonenization ( scheei~ 2) mechanisms , hrvv~ cc- of the ~~~~~~~ ~~~~

tetrafluorobora te aru on represents a key step . The tote - aro bc’r’~te a~ r

provide s a stable ar nie within a.th c) the second fluo r ine atir f m-i l~eF,

reside while tin r rn nofl ierc’nor bornvb cat l (nr  ~ te n rearran ge to itS :ost

stable soecies ~~~. Subsececen t recond ai-v fluor ination by the tetraflurore—

borate anion of the ~~~ot s’-ab le r~onnfluorcnorborev~ catc on 9 auth cts

cherge situated thrc:-~ canirco teeters fran the c~ conin e bonded carbon ate

affor ds the unicue 2 ,5-d  fiuoror~r ’hi ’nanes and r e’uenerat -cs the boron

18



trifluoride catalyst. Verification of the tetr af uo~obora te anion ’s par—

ticipation canes fra n a diethyl ether solvolyzed fluorination which pro-

duced the two nonm~l 2 , 7-difluoronorbornanes as ~ma ~or products . The in-

finitely high concentration of dcethy~ ether nolecules tin uaId .v hold

boron trifluoride melecule in its etherate canpiex and no sianificar t tetra—

fluorobc’rate anion can form . Hci~ever , direct introduction of the tetra -

fluoroborate anion as LiBF4 into the diethy l ether reaction s’ stom, in

place of the boron tr ifluori de etherate , produced a drametic oroduct re-

versal where the 2 , 5-difluoronorborranes collectively predatina ted oi’er

the analocous 2 , 7-isar~rs (Table IV) . This continual cornolexa tion is also

responsible for the lack of any sicn-iificant selective isanerizaticn when

using diethyl ether solvent.

Diethyl ether solvent erployed in place of dichloranethan e p~~vided a

large decrease in the formation of both 2 , 5-difluoronorborrane ercxiucts .

Inst ~~d the 2 , 7—difluorono rborna ne con~~ unds cereati-j m e d  mated over all

other reaction products . InterestinTly, they remresen t ana hecs of the 2 , 7-

dthalonorbornane compounds that are nor mally forr~~ as the ima jor oroduots

in other halogena tion and intexhalogenation additions. Ccrma red to the di-

chiorane thane solvent, diethy l ether solvolysis offers a hicher decree of

stabilization to the monofluoronorbornyl cation species B and 10 (scherie 1)

and sufficiently diminishes the necessity of the stable species 9 for~m~-

tion by the competing hydride-5, 3-migration pathway. The format ion of

nort ricyclyl fluoride ii from species 8 in diethyl ether solvent , but oct

with dichiorure than e solvent , provides addi tional evidence to this effect .

The dichlo rure thane solvent enhances the 2 , 5—difluoronor bor nane selectivity

19



in the 
~~~ 2 fluorination of norbo rnene by maxanizing the lOnci ranqe electron

withdrawing destabi 1~ za tion effects of the fluorine atom upon the interTr ~ lii-

ate rron ofluoronorbo rnyl cation species. This effect pr arc tes the cai~~ tinn

r~~ctan t pathway that enhances formation of the nost stable c- .ofluvonor-

bornyl cation species 9 (sch~ ne 1) .  Subsequent fluorina tion o~ species 9

affords the unique 2 , 5—difluo rono rbo rnanes in high yield . The i~cabil tty of

other less electronegative halogens in nor bor nene haloqanations to nrcy hxie

a substantial prop ort ion of 2 , 5-dihalonor borna nes is taken as additiona l

evidence for operation of long range fluor ine effects in dichloromethane

so~Lvated XeF2 fluorina tion of norbornene . This same factor :~~:t also ~-ause

the fo~~~ tion of this same stable intenre diate species 9 which is neces-

sari ly cenerated dur inc the highly select ive isaner ization of the 2 , 7-di-

fluoronorbornanes into their 2 , 5-isare ric analogs (sch~ ne 2~ .

The elucidated boron trifluori de etherate initiated ionic fluorination

mechanism plus the cataly st and solvent effects upon th is direc t fluorina-

tion procedure, begin to Outline the key chemical consideration s necessary

in pr edicting ar id planning future synthetic effc r-ts . The ionic f urnina -

tion ~nechanisrn, and its propensit y to effect the rearrang~ nent of initially

forr red rrc noflwronorb omyl ions to r~cre stable form s , can be extended to

explain the di f feren t irajor products observed when 1, 2-dibr anoethene ar id

1-decene each were fluorinated with the :~eF2 reage nt. 2 The nioostrat€ ~

ability to reverse and control the formation of ~~~~~ difluoronorbornane

products throug h solvent or ch~ rtica1 catalyst variation also defines

severa l i-r~~ rtant parameters within which selective fluorinations might

be obtained . Correlation and integration of these catalyst and solvent

20



variations within this ionic fluorination n c-he n inn nrov idcs an intriguing

perspective ;~h thin w~-ich to predict and naxirnize the reaction conditions

necessarv for improved , high yield , selective syrtheses of nove l and ira-

portant fluoroorganic compounds.

21
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E PERI~~NT~.L S~~~ ION

General. in all cases the detai led reaction procedures described herein

under “Method A ’  were follc~ ed while conducti ng the fluor inati ons . Soeci-

fically this applies to the storing , weighing , and transferring of the

solid XeF2 and to the addition ~~ t~h x ~ used to introduce the norbornene,

cata lyst , and solven t into the reac tion system.

The acetone used to rinse and dry all items for thi n d:rect fluori na-

tion procedure was Burdick and Jackson “Distilled in Class ” and ~~s used

as received . The wa ter ~~~loyed in all operations was tthen : r - ~tI~

the labora tory ’ s distilled water Line . The dichioromethane solvent wan

:~iatheson , Coleman and Bell Spectroquality . Prior to use ~t was ~:st. I - ‘

over NaOi 1 :cell-ats and stored over 4~ colecular se~vez in a ~~~cc~ c- Sc:e~ —

tific Company Isolat or/Lab drybox (Ser . ~~~~~ . 282 ) with a r~x~~fh.ed v~n~

train. The drybox provided a dry N 2 atrrosphere under which the scd.~d NeT ,

reagent was also stored in a teflon screw top bottle. The diethy l ether

solvent was ~allinkrodt AR. Irm~~ iately prior to use , it was ref luxed over

Na metal until a trace an~ ’unt of benzophenone indicator turned blue to

siqn ify dryness . The bor on trifluoride etherat€ catalyst Y~asuran c’vcar. ic

C~~~nicals, Practica l Grade ) was vacuum distil led to a pure colorless

liq- iidc-22 it was relistilled whenever discoloration appeared during

storage . The LiBF4 
(~~ R , Inc. ) was used as received , but the norbornene

(Aldrich Chemical Carpa ny) was fractionally distilled to a waxy colotiesn

solid pr ior to use . The XeF2 disp layed 100% ~uritv in mass spectral

analysis on art inn rirrcn t possessing a 99.9% detection limit. Care must

be taken to use o n y  pure XeF2 .~n the procedure described . Sar ples
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of XeF2 that are contam inated with trace arrounts of X~F4 will be explosive

if the contaminant air hydrolyzes to Xe03.
2

All glassware . capillary pipets , tef lon coated -~aenettc stir bars , and
23teflon coated spatulas were cleaned by a simi.:.ar technicue to that pre—

viously descr ibed .24 The items were soaked in a seven liter stainless

steel beaker charged with distilled water and a rnall arrount of A~ cono-:

soap. The solution was heated to a mild boil ; then , the items were indiarid-

uallv reneved with tonos and imrediately rinsed in succession with dist illed

H 20, acetone , distilled H 20, and acetone. After ato~ sohere dr:inc , the

35 ml sincie—nr ~ched round bot tom ~las~ . teflon coated rracriet:c stir bar r

14/20 around glass stoppe r , so~at~~L~ ‘~fcr we~ ahina out the XeF2 ) ,  and the

qraduated cylinder (for ~~~~~~~~~ c~ t the re~ct. on solvent) wore all pl acec~

into the ~‘sscher Iso La to r . n~~b ~.rvhcx to ~tand overn:-~~t. The rem::~n nria

glassware and a~~~~~~ na rer~~~r~~ --.~~~d ~~ the a~ rosohere on a clean ab—

sorbant oaoer drain nod until ~~~

~elting x)vc :5 were ohtiii net~ ~n sealed Class caoillaries with a NCL—

Temp rre ~itLn q a~c - : t  ~~~c r ~± : -r and are oacorrected . ‘~iass stJectra wa rL o~-

tam ed on either a ~:ewiett Pac ka~ d ~2907- . GC/~ S soec-trnc-~ercr ecronrec with

a 5992A GC4~1S terrnincd . system or an a ~ePont 2~ —4 9l dual bear ness snectro--

meter. With the l e f t- n  instrument , the oroduct volatility ren’iired direct

injection usmn c methanol ~1-~ = 32) solvent . Nuclear a .rcti ’ resonenoc-

( 1H arid 19F) analy ses -
~~

--
~~ accomplished with a Varier T--60 soectram?ter in

tX~~l3 solvent. The nmr soectra were always refer enced to TN~ . A Va.rian

Aerograph ~tedu1 m e  Series 2700 dual cohm~n chrar 3tooranh ~ns used to sen-

ar ate , isolate , and ident ify the rinatad prai ucts usir’cr a 10 ~t. 1 7
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1/4 in. 10% Carbowax 20M on 80/100 mesh Chrcxrasorb W column with a variable

coli.zr~ t erature range fran 95°C to 195°C. All products isolated free

this glpc column were condensed in snail glass traps (constructed in this

laboratory ) that were suhr~ rged in a liquid N2 bath. Isarer rroduct per-

centages were determined fran disk recorder integration scans . There ~~re

sara unresolvable tars formed in the fluorination reaction which care off

the colurrn at fairly high retention times. Hciwever , the percent of all

isolated products contained in Table I and IV represent 86 to 941 of the

total fluorinated products in the boron trifluride etherate catalyzed

solvated reactions (95% uncatalyzed) , 87 to 92% in the boron tn-

fluoride etherate catalyzed diethyl ether solvated reaction (63% uncatal~’ze ’)

and 83% in the LiBF4 catalyzed diethyl ether solvolyzed fluorination . All

elemental analyses were accar~ 1ished by ~~ilbreth Laboratories , Knoxville,

Direct Fluor ination of Norbornene with Xenon Difluonide in.

Solvent. (~~ thod A ) .  Inside an isolator drybox under i dr y  N 2 atr ~~sninP ’~~,

a 35 ml 14/2 0 single—necked round bottom flask was chanced with a teflon

coated magnetic stir bar and 0.35 g (2 .07)  rtuol) XeJ~’2 . A ~~-aJ x’.~fer

funnel with a i4/20 ground glass jc int was used to he lp n~ra sfer the XeF.~

with a s~~tu1a into 35 ml reaction fLask . The 35 rd flask was then im~~~~

ately stopper€xI with a 14/20 ground glass stopper . (Note : Neither the

flask nor the st~~per were treated with any silicone vacuum crease.) ‘cart

ti-~ spatula and funnel , used to transfer the ‘
~~~2 ’ were rinsed with CH2C12

at rc~xn temperature to destroy any residual XeF2 . Seven mi ~cf the troate~

~~lvent was poured into a 50 ml creduoted cylinder , and the drybox
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was then purged three successive times with fresh N2. The cres t N2 was

pumped directly into a fume hood exhaust. Next , the stor er . d 35 ml re-

action flask and the CH2C12 containing graduated cyclirder were r~~ Dved

fran the drybox , hand—carried to a benchtop fiare hcxx~, and were placed into

the hood . The 35 ml reaction flask was suixterged into a dry ico/acetone

coding bath (ca . -78°C) to reduce the vapor pressure of the XeF2 prior

to the ground glass stopp er rencvai . Within 15 sec the stopoer was re-

rieved and was iirrr ~~iiate1y reniaced with a 15 ml pressure ecuhiized addition

funnel fitted with a Dre irite containing dry ing tube . This apnara tus was

assanb led prior to the XeF2 weighing is the drybox . All ioinns in this

appa ratus assembly were sealed with silicone vacuum grease inciudinc the

male join t of the 15 ml addition funnel. The entire a~par atus was placed

into the 35 ml reaction flask as one unit. Next , 0.18 g (2.14 rrrro l) nor-

bornene was weighed into 2 ml of the treated CP2C12 solvent; then , the

solution was transferred with a rubber bulb fi tted caciliarv ninet into

the 15 ml addition funnel. The drvinc tube was rerroved f ran the additicn

funnel during this transfer and was then irm~ diately rerlaced. The nor-

bornene solution was added dropwise to the solid 
~~~~ 

over a ~-l0 rain

period , and the resulting heteroqenous suspension was stirred as soon as

mechanically possible. A snail ar’owit of pure CH2C12 (ca. 0 . 5  ml) was =

used to rinse the inside of the additional funnel; this was also added to

the reaction suspension at the same rate . Subsequently 0.10 a (0.17 rrcl)

boron trifluoride etherate26 was weighed into 2 nl tr:a~ed C!-D C 2 solvent;

then . this solution was transferred in like manner into the 15 ml addition

funnel. Wcthin 5-10 m m  a fter the norbornene solution addition, the B~ 3O~r2
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solution was added dro~~ise to the stirred norbornene/XeF2 suspension .

Again a small arount (ca . 0 .5  ml) of pure CH2C12 was used to rinse the

inner walls of the addition funnel , and this wash was allowed to dror into

the reaction susoension . The reactior~ was stirred at -78°C for 5 .5  to

6.5  hr; the reaction was extr erre ly slow. The dry ice/acetone cooling bath

then was packed once n~~re and insulated with wraro ed towels. Over the fo l-

lowing 15-16 hours . the bath was allowed to warn to rain ten~ erature , and

all solid XeF2 disappeared leavinr a dark brown sc ’ ution . A 30 ml sepa-

rato ry f~r~rel was charged with 10 el distilled H 20 a~d 0.25 NaP’ to tie

i.~~~ any possible HF for rn ed . The reaction solution was then tr ansferred into

the separa tozy funnel. The 35 ml reaction flasic was rinsc-d with 2 el

and this rinse was added to the separatory funnel . The CH 2C1~ solution was

washed with the aqueous NaF solution and separated . The aauecus wash ~~ s

then extracted with 2 ml 
~~ 2~~ 2’ and this was -cr rrb caced r~.ith the first

~orr ion . The canbined C~ 2C12 ~x rtions were dr i ed over anydrous ~~SC , anc~

filtered to provide a golden solution . In several cases in ~~~~~ solvent

rerroval was accomplished and afforded 0.10 to 0.18 a of a dart ~rr~r~

solid product mixture. Usually , the O~2Cl 2 solvent was not r~~~~~’ . . and =
the solution was introduce d directly to glpc separation and cur i f cca t ion .

~na1ysis with the Carbowa x 20M oo1~~~ afforded products 1, 2 , 3 , and 7.

They were isolated from the gl~~ coluiu~ in the following or dar : 2-exo- -

anti-diflirronorborriane 3~ volat ile white solid ~~~ 109.5 - 111.5°C, l it .

109 — 111°C) nnir (~~ Cl 3 ) ~ 5. 12 (~~~ublet of broadened sinc’T4ats, J ,  =

58 cps , IR ) , 4 .58  (doublet of multipiets , 3. = 58 cos , 1!!) , 2 . 4 6  ( doub let

of niultiplets , dd 12 cps , 21h , 2 .20 —0 . 90 (rmil tiulet s , ~~ 
‘9F r~or
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(~~Cl3
) ÷ 50.8 p~xn from C6F6 or + 163.6 orr ~ from Cr213 (doublet of multi—

plets , 
~d = 58.7 cos~ mass soectrum ~~ 132 (base teak 81) ; E lern . Anal .

Ca lod. for C7H10F2 ; C , 6 3 . 6 ;  ~i , 7 .64;  F , 28 .7 .  Found: C , 6 0 . 8 ;  H , 7. . 4 ~

F , 28.8 ;  2—end o—5—exo—difluoronorbor nan e 2 , volatile white solid (rr ~ 105.0 -

107.0°C) ; 1H ~~~ l6 
~‘ci 3) 5 4.94  ( doublet of aultiplets , 

~d 56 cps , l~~

4.80 (doublet of broadened dounlets , = 56 cos , in) , 2 .62 Oaai tiolet , 2P) ,

2.30—0 .60 (nul tiplets , 6H ) ; 19r nrr ~ (~~ C13 ) + 30.6 rr’ fra ~ C 626 3oab e t

of multiplets , J = 58.6 cps) ; mass spectnin N~ 132 (base ~~ak either 85 nr

86) ; Elem. Anal . Calcd . for C7H 10F2 ; C , 63 .6 ;  H , 7 .64 .  Found : C , 6i .E ~

H , 7.32; 2—exo—5—ex~~dif1uoronorbornane 1, volatile ~ml~:e so1~d (~~ 100 .0 -

107.2°C ) ; 1H nn~~~
5 (~~Cl 3

) 5 4 . 4 8  (double t of multiniets , J = 56 crs , ~~)

2.46 (r rtultiplet , 2H ) ,  2.20 — 1.10 (multiplets , 6H ) ;  19F nat (~~ C13
) -

~
- 3 . C

p~ n from C6F6 
( rra .iltiplet resentling a quintet) ; mass spectriin M~ 132 (base

peak either 85 or 86) ; Elem. Anal . Calcd. for C
7H10

F2
;C , 63.6, H, 7.64;

F, 28.7. Found: C, 63.3; H , 7 .45;  F , 29.1; product 7

(I”ethod B ) .  All procedures outlined in Nethod A were repeated with

t~o exceptions. A chlorobenzene/d.ry ice cooling bath (ca. -4 3°C) was used

in place of the acetone/dry ice bath; and secondly , one half  of the reaction

solution was reiroved early , quenched and analyzed. The ren ainder of the

reaction solution was allowed to proceed as in r~etJ~X~ A. enendirig upon

the airount of dry ice used , the t~ r~perat ur es in the chlorobe nzene/dry icr

bath varied from —46°C to ~4lc~C . In one case (Table I ) ,  a reaction at — ‘t’°C

gradually warmed to -39°C during the 15-20 minutes that 
~~~ ~~~2 

was con-

sired ; two other reactions were held at -41°C and -46°C during cons~~ption

of the XeF2 . One hour and fifteen minutes after the addition of the
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BF3OEt2 solution was first added , approximately one half of the reactioa

solution ~ca. 3 ml ) was r~~oved and placed into 10 ml aqueous NaF so11tocr.

The quenched aliclucit was worked up and alpc ana lyzed. Four products were

isol ated o~~ the Carbowax 20~ in the ~~l1owing order : 3, 2 , 0 , and 4.

2—ex~~~-s —1~~~~~~ionorbornane 4 , volatile white solid~ 
~~~~ rum: ‘2x7C13 )

4 . 8 3  (doublet of broadened singlets with shoulders , = 56 cms , 2H ) ,  2 . 4 €

( :~oub1et of n~ltia1ets , C , = 12 cps , 2~d , 2 .12 — 0.66  (multinlets , 6H ) ;

mass soectrurr “~~

4-

~ 132 (base peak 81) .~~~~~ Note : Method B was ~sed in the

XeF.. f i..ior0nation of the 2—de uterionorbornene sample.

(No BP J OEt2 Catalysis) . All procedures outlined in l~athoe A were

followed iden t~cal1y with one exception . ~o boron tr ifluoride etherate

catalyst was added . Instead a 2 ml blank of pure CH 2CI 2 solvent was added

to the stirr ed norbornene/XeF2 reaction suspension in place o~ the BF3OEt 2,/

2 ml soluti on . A~ the end of the reaction teriod , the har~~ eneous

reaction solution was a clear gold . Analysis with the Carbowax 20M glpc

colirr~i afforded six products in the fol lowing order : II , 6 , 3 ,  2 , 1 , and 4.

2—nortricyclyl fluoride 17 , very volatile white solid ; 4H nrnr (t~ Cl 3
)

(doublet of broadened singlet s , 
~d = 60 cps , ill) , 1.98 (doublet of broadened

.4-
singlets , 

~d 12 cos , 211) , 1.28 (broadened stnelet , 7H) ; mass soectru~ N

112 (base peak 97) ; 2—cndo—3—exo—dif1uoror~orbornane 6 , vo atile white scli ’ ;

mass spectrum M~ 132 (base peak 67 with 68 as 82% ) ; glpc retention tire on

Carbowax 20M colt~~ identical to major product of a photochen~ical ini tiated

XeF 2/norbornen e fluorir.ation21 which was identified as 2-endo-3-exo-difluo ro”

nothornane by 1H r~~r and mass spectrum ana lysis.
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Direct Fluorination of Norbornene with Xenon Difluoride in Diethvl Othe r

Solvent. Initial preparations and procedures were conducted identically ~ith

those outlined for Method A in the CH 2C12 solvolyzed reactions except that

diethyl ether solvent was used in place of CH2C12.

(Boron Tr ifluorid e Etherate Catalysis ) . A 35 ml sinole-n ecked round

bott om flask , containing a teflon coated magnetic sti r bar , was charged ~~ th

0.35 g (2 .07  niro l ) XeF2 . The XeF2 containing reaction flask was sui~~ rc7ed

into a chlorthenzene/dry ice cooling bath (-44°C ) , and the final reactio n

apparatus was asseirbled as previously described (Method A ) .  :;ext , 0 .23  e

(2 .44 r rn ol) nor bornene was weighed into 2 ml Et 20, and. this solution was

added clropwise over 4 m m  to the XeF2 containing reaction flask . Stirrioc~

was begun as soon as mechanically possible. Nine minutes after addition of J
the norbornene etherea l solution , 0.1 g BF3OEt2 was weighed into 2 ml Et~d

and this solution was added dro Nise over 5 mm to the stirred reaction

suspension . After 2 . 3 3  hr , a reaction aliquot was anal yzed by gipc/ms, and.

no difluorIde products were found . A CE14/dry ice bath , and a haroqeneous

then substituted for colder chlorobenzen e/dry ice bath , and a horrogeneous

solution gradually resulted . S~~e fluorir.ate d Products were found after

4.75 hr reaction tine. After 6.66 hr , 1 ml additional Et 2o was added to thc

reaction solution to replenish sate volat ile solvent loss. After 10.5 hr

the cold bath had warn ed to -5°C , and the bath was reiroved. At 11.0 hr

half the reaction (ca . 2 ml) was ra ~roved for work up and ana lysis. The

(x:14/dry ice cold bath was again placed around the reaction flask , then was

repacked with dry ice and insul tated with towels. Again 1 ml Ht 90 was added
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to the reaction to replenish evaporated solvent , and the remain mn~ solution

was left to react further. Meanwhile the aliquoted solution was hashed

with 10 ml distilled H 20 containine 0.2 2 g NaP , 0.20 g dl , ~ind 2 capiliar

pipet drops of 2N fl 7SC4 .
27 The ethereal layer was separated , and .5 ml

of fresh 
~~2° 

wus used to extract the aqueous solution . The t-.~~ ether c-ml

portions were combined , dried over arthydrous MgSO4 , and were filtered . The

nearly colorless (slightly yellow) solut ion was snalyz ed by d c , and the

pr oducts eluted fr ’-~- rho CarlxMax 20M column in the following order: II ,

3, 2 , 1, and

(NO Boron Tr ifluoride Etherate Catalysis ) . All reaction preparations

and procedures were conducted in a similar manner to that discussed in the

analogous BF3OEt , catalyzed reaction ; however , this uncat alyzed reaction

proceeded rr~ ch rri re slowly . The 35 ml single-necked round bottom flask ~~~

charged with a teflon coated magnetic stir bar and 0 .35  g (2 .07 rr ro 1~ de~O-, .

After cooling this reaction flask in an acetone /dry ice bath , a 2 ml ~t2O

solution containing 0.20 g (2 .13  niro l) norbornene was added dropwise to the

XeF2 containing reaction flask over a 5 mii i period . Stirrin cj was initiated

as soon as mechanically nossible . Seven minute s after addition of the nor-

bornene soluti on , 2 ml Et 20 was added dro~~ise to the stirred reaction

suspension over a 3 m m  duration . After 4 .75  m m  solid XeF 7 r~~ained ~~ a

colorless solution . The acetone/dry ice bath was repacked , insulated with

t~~els , and was permitted to warm to room tanperatur e over the next 16 hr .

At this point the reaction was recooled in an acetone/dry ice bath , and a

white solid fonted on the flask ’s inner wall just above the solution. The
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cold bath was r~ roved, and. I ml Et20 was added droow ise over 1.5 mm ~c

cover the solid formed on the inner wall. All solid dissolved as the color—

less reaction solution returned to rcxxn temperature . At 28.5 hr the reaction

solution began to turn yellow . Aftet 44 hr the reaction was daick br o~.1n , and

at the 46.5  hr point , the reaction solution was worked up arid ciipc anal ze~’

as described in the analogous BF 3OEt 2 catalyzed react ion . The reaction

products were isolaied from the Carb owax 20M c~lpo colurru -i in the followinc-

order: 12 , 11 , 6 , 3 , 2 , 1, and 4; 2-fluoror iorbo rnane 12 , very vv-lati ~ e

white solid ; ‘H nmnr ( DCC13
) 6 4 .62  (d~ublet of sharp nulta mlets , J 1 = cns ,

lH) ; 2.44 (doublet of multiplets , 
~d 

= 11 cps, 2H) ; 2 . 0 C— 0 .~~ ( ltiplet ,

8H) 28 ; mass spectrum M~ 114 (base peak 68) .

(L ithium Tetrafluoroborate Catalysis) . All reac t ion nrenaratlrns and

procedures were conducted iii similar manner to that alrea dy d escrIbed .

35 ml single-necked round ~ott~~. con taining a te f lon coated ria n~~t -: ~t: r

bar was charc7od with 0.35 e (2 .07  nirol ) Nd ’
2 and was the: ~laced into a

a clüorobenzere/dry ice (--44°C) cc~a1inq bath. ~ext , 0 .20  ( 2 . l ~ ~‘rcl~

norbornene was weighed into 4 ml Et 20. The nor born ene solutar n was added

dro pwise to the coutbaninc reac tion flask over a 9 mm n e d, an~

stir rinu was begun as soon as n~~~hanica11y possible. ~~ thin 4 .5 mi-n aft er

addi tion U the nor bon ene soluti on , 0.20 ~ LiBF4 solid was added directl y

to the sta rr ed ron ction susr~ nsiori with the aid of a 30 ml ro rlar funne l

that possessed a 14/20 rule around class joint . f t~e~ .5 hr solid XCF
2

was still presen t in the reaction suspension. The c-h r ’?~nn7ene/drv ice

cold ba th was r~~ a’~ked , insulated , and was left  tu wnrr t’~ rc~~c tarperature.

Afte r 23 an , the dark brown reaction ~e 1’itaon was r’~- u n ~ into 10 ml distilled
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H 20 that contained 0.4  u NaF . The ethereal layer was wanhed ~nd ~~u-a rat~ -

An ~~ditional 5 in). 
~2° was a d e d  no the aai.~ ous wash , and the acraeous ~~~

was then extracted with 2 ml fresh ~ t 0 . The t~~ Et~-,O cortions were cor~-2

bined, dried over arthydrous ieS~)1~, filt ered , and ~~ne ar.i-dyzed by clpc .

Seven products were separated and isolated from the Carbowax 20’~ cl~ a

colirmn in the following order : ~~~~~ , II , un-k 29 , 3 , 2 , 1, and 4 .

~~hydrofiuorination of 2-Exo-5—Exo-Diflucranorbarrian’-. ar a pre-

viously reported dehydrofluorination procedure that : ilod -an ti-fluoro-

norborriene from 3 and. 7—~y~-fluoronorbornene from 4 resn~ctiv - ~~~~~~ 

~-e’-:o--

fluoronorbornene was synthesized from 2-exo—5-exo—di 1 noronerhornan e 1.

The dry D~EO solvent was prepared by refiuxing it 2 hr over Ca~ 2 and then

vacuum distilling the DMS0 at 29-30°C/0 .04 ~ n onto 3A irclec~Lar selves.

Under a dry 
~~ 

athcsphere a 10 ml single—necked round bottom flask was

charged with a teflon coated magnetic stir bar , 3 ml DNST , 0.103 g (0 . 777

rrr~~l) 2—exo— 5--exo--difluoronorbornane, and 0.l0(~ g ~0.946 rrr~ I) potassi~-m

t-b~utoxide. While still under an N-~ athosnhere , the reect i on flask was

fitted with a water-cooled reflux condenser topoed with a Dveirite c-ontz in- --

ing drying tube. The reaction solution was heated between 95-iJ7~C a tota

of 17 ~~urs; prior to the last ~ hr of heating, an additional 1 ml ~~~~ ~-:nc-

added to the reaction flask under a stream of dry -
~2 

After acc1l inn to roan

tasperature , 10 ml H 20 was added to the react ion , arid the aaueous I - ’&7 reac-Linc

solution was continu ously extracted 9 hr with 10 ml CH 2CI 2 . The aqueous r~iso
layer was then discarded , and CH2C12 extract was washed with S ml H-, 4. Th is

H20 layer was separated , and then was continuously extracted 3 hr with -a ~c’
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ml (minixrun ano’L~1t needed to fo rrc an organic layer , ca. 2 ml) of fresh

~~~~~~~ 
This O-!2C12 cxarnaori was ~ieparated and canbined with the first

extract , and the carbined ck2c12 extracts were washed with another

8m1 portion of H20. This r120 wash was then continuously extracted 3 hr

with a few ml of fresh CH2C12 as before. This third. 0H2C12 extract was

orxtbined with the previous ~~2 C~ 2 extracts. These coii ined CI~2C12 portions

were washed with 7 ml fresh H20. Again a few ml fr-ash 0P2C18 was used to

extract this 7 ml H20 wash as before and this fourth ~ -i2Cl extract was com-

bined with the other CH2C12 extracts . The cxubined 012C12 extracts were

dried ever ’; anhydrous MqS04, filtered , and were concentrated by careful

fractional distillation through a Viqreaux cohin~ to about .5 ml. Analysis

by gl~c with the Car~~~ax 20M co1Lm~ provided three oeaks using a 85°C

colui~i t~ r~erature for 5 min after the air peak followed by a 195°C column

temperature for a total of 26 mi-ri . The first peak proved to be the volatile

5-exo-fluoronorbornene while the second peak was unreacted I. The third

peak was tT4SO. The glpo analysis revealed that 42% of 1 was converted to

the dehydrofluorinated pr~~ uct. The 5-exo-di. fluoronorbornene was isolated

of f the glpc coli.~~i using a liquid r 2 bath ; it was a volatile white solid ;

r~r~ (rxxl3) ó 6.32 (multiplet , 111) ; 5.88 (muitiplet , li-k ;  4.72 ( doublet

of multinicts , 
~d = 58 cos, 1H) ; 2.96 (unsyrrtne trical muitip1~ct , 2H); 1.94 —

1.02 (mu ltiplets, 4 W ;  mass spectrum 112 (3 1%) with ~ /e = 9 7 ( 5 3 )  , 86(66)

84( 00), 73( 84 ) ,  arid 66~82).

Synthesis of 2-Deuterionorbornene.30 A 100 ml three-necked round

bott om flask was charged with 22.1 q (0 .38 4  iro l) of one micron 40% Na

dispersion (Gray ChEni cal , Inc.) in petrole’ri ard mineral oil. The flask
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was fitted with an N2 stopeocked inlet and identical outlet , plus an over-

±iead rrount ed machanical stirrer apparatus . Next , 20 ml “DistiLlad-in--Ola ss ”

hexane treated with neutral ali.~ ina (PH = 6.3 )  was added to the reaction

flask . The flask was su ir~ rg& into a Ct14/dr’1 ice coolinn bath (-23°C )

and cooled with vigoro us stirring . This cooled suspens ion was stir rc~i at

high speed while 12.0 g (0.130 irc l) n-chlorobutane in 10 ml h-axane was

added dro~wise over 1.3 hr. The n-chlorobutane was dried over 47W. r~a1ec~~~r

seives and passed through neutral alumina (oH = € . 3 )  er-or to- ats co~bina-

tion with the hexane solvent and introduotion into the sodium suspension .

After all ri-buty lchloride was added , the CC14/dry ice cool-eq bath was re-

placed with an ice bath for 35 mi-n . Next , the 0 14/dr y ice bath was aga in

placed around the reaction flask , and 8 mix-i . later 12 .0 n (0.128 n~ 1) nor-

bornene in 15 nil hexane was added dro~~ise to the stirred reaction sus-

pension over 10 m m .  The cooling bath was r~~cved and the reaction solu-

tion was stirred at ambient t~ nperature for 22 .5  hi. The 02l4/dry ice bath

was then placed around the reaction flask for 10 m m .  and the syst~~ was

opened to the athospher-e . Next 8 .9  g 98% D2C was very cautiously -add~~i

drop wise to the rapidl y stirred suspension using a dis~x~sab e cayiLlary

pipet. The reaction exothenr~~ slic’htly after the first few dro’ s of

were added, but all material was contained in the reaction flas :-, .  ~~ tcr

all the 1)20 was added , the cooling bath was r n~~ved , arid the reactio n was

stirred at ambient t~ iperature 4 .5  hr. The reaction solution was trans-

ferred into a separatorv funnel ; then 75 ml H 20 arid 10 ml hexane were also

placed into the funnel . The distinct organic layer was sroarated , arid the

r~~~ining ~ nulsiori was extract ed six tirr~ s with three 20 ml hexane portionx-
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followed by three 40 ml cliethyl ether portions. All hexane ~~~ ethereal

extrac ts were canbined ar id dried over arthydrous ~~S04. Af ter filtration ,

the solvent was r~ roved by fractiona l distilla tion . The ur idistilled portion

was then distilled through a micrc~ av~ short path apparatus , and only the

material that condensed iii the water cooled condenser was retained . Proton

i-m r analysis revealed this rr~ teria1 to be 2—deuter ionor born ene. An att ~~~ t

to further deuterate this 1.9 sarole mat with 2ailure ; hc~ever , the 2-

ciouterionorbomene s~rr~ le (0 .7  a) was recovered by short path distillation .

This sarcde afforded the fo11~~~ n~ nmr analysis: nrr~ ~X’C~~ ) ~ 6.04

(sh~ r~ multi~ 1et , 1H) ; 2 . 86  (sha r ~oi-fl- 1et , 2H) ; 1 . 8 6 — 0 . 6 6  ~nult ei-ets

6H) ; irass spectrtrn ~~-l = 96 ( 5 . 6 ) , :-~ = 95 (12.7), M—l = 94 (‘L 5~ with

68 ( 4 3 . 0 ) ,  67 (100) , ar id 66 ( 3 6 . 5 ) .

AC EIX~~EN’rS. Dr. R.A. Hildr eth provided constructive discussions ae~

technical assistance. Cbnst ruc ti’:e discussions v~i su~~xart were reco~ved

f r ~~ Dr. B.A. Loving , Dr. M. L .  D~~~ L n’  ~r , ari2 P r. L.A. K~nc . ~r. .L.

Pflug provided techr ica3. assistance and per formad all rimr and ness spectri.mn

analyses. ~rs. 3. Plonsky ty~~d the ir~nuscrapt . ~1:. 7’.C .  Kibler erovided

extensive technical assistance and necessary q3assalcwi-nc s’ipport .
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synthesize the 2-deuterionorborne ne proved to be hazardous and. c~~;- 1:c’
unpredictable. in one case , the reaction was cooled too much (-7~~ 2~
while the n-buty l chloride was added dro~~ise t o the stirred sodi un
matal susç~nsion . At this cold tat t~erature an irriediate conversi oo :°
n-buty l sodium ~ppar ent1y did not occur caus ing a build-up of unrc -

n-buty l chloride in the sodium n~eta i suspension . Once reac tion bec~~
it quickly exother ired uncontr oll~~ ly and ex~loded uio1entl~ . Prow
shield ing and precautions should. be instituted when atteripti-ng the
describ ed rre talation reaction .
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